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Abstract

Some of the nonGaussian distribution functions used to model observational error in nonlinear
quality control are known to lead to undesirable multiple-minima in the cost function of the
variational assimilation, which can potentially degrade the degree of convergence, and hence
degrade the quality of the analysis itself in the most adverse cases. One remedy is to construct
a system of plausible probability functions which, while possessing broad tails, still retain the
Gaussian’s property of convexity of the negative-logarithm of the density. Another remedy (to
be dealt with in a sequel to this note) is to attempt to simulate, in the assimilation, the effect
of including a loss model, which will tend to regularize the minimization problem even when
the probabilities themselves do not all have convex negative-logarithms. This article employs
methods of integral transforms to construct a system of probability models guaranteed to be
expressible in the form of positive Gaussian mixtures, which we argue to be plausible in cases
where the actual effective error is (as is so often the case) dominated by representation error.
The simplest two-parameter form guarantees that the aforementioned convexity condition is
met, while a further generalization extends the family beyond this limitation, but in a way in
which the degree of violation is under the control of the third shape parameter. The archetypal
example of the proposed new family is just the classical logistic or sech-squared distribution.
It therefore seems appropriate to refer to the proposed system of distributions as the ‘Super-
logistic’ family.

1. Introduction

The goal motivating this study is to find a systematic way of extending the Gaussian distri-
bution in order to be able to model probability densities possessing tails more substantial than
those we obtain with the Gaussian distribution. The Gaussian may seem to be a very natural
distribution for describing errors from an idealized measuring instrument under well-controlled
and repeatable conditions, but the reality of meteorological measurement practice is that the
dominant portion of the effective error comes not from the inherent instrument noise, but from
a combined variety of extraneous sources of what we call representation error (Lorenc 1986).
The analysis is discretized using a finite resolution grid, so an important component of the rep-
resentation error comes simply from the fluctuations of the atmospheric quantity that are real,
but unresolved by the limited resolution of the analysis grid. Other sources of representation
error come from the imperfections in the forward operator which determines what the theoret-
ical measurement value should be, given the (assumed true) analysis state. Since the effective
observation error (‘ob-error’) assumes a variance contingent upon factors that relate to the top-
ical and contemporary, but imperfectly characterized, atmospheric conditions more than upon
the standard instrument error, it is reasonable to take as a model for the measurement error an
appropriately weighted mixture of the pure Gaussians that would each pertain to a particular
ambient atmospheric condition. If these ambient conditions are themeselves distributed ac-
cording to some (positive) probability density, then the mixture of Gaussians they imply must



necessarily be of the positively-weighted kind, and this automatically ensures that the com-
bined distribution of measurement errors will be of the heavy-tailed variety. There are other
geophysical contexts, such as some climatological deviations, where short-tailed distributions
have a role to play, but the emphasis of this note is specifically the representation of effective
measurement errors in a realistic way, where heavy-tailed distributions are overwhelmingly the
norm.

Based on the motivation given above, we should certainly demand that our Gaussian mixture
be of the nonnegative kind – no negatively-weighted Gaussian components. We do not rule out
the possibility that the centers of the participating Gaussians might not be coincidental. For
example, when the errors tend to be relatively large, they may also tend to be skewed to
one side of the mean, and when they are relatively small they may tend to lie on the other
side. In this way, a generalized Gaussian mixture can exhibit a marked degree of skewness
and asymmetry, which provides another sense in which the Gaussian is generalized (not only
to possess heavy tails). However, we recognize that the relatively special generalization of
the Gaussian which remains symmetric should serve as the reference point and anchor for the
more exotic asymmetrical generalizations we shall eventually explore. We also emphasize that,
in order for these extensions to be true generalizations, the Gaussian itself should belong to
the extended family we are formulating, if only in the form of a limiting case. We limit the
scope of our generalization to unimodal distributions, which are overwhelmingly the relevant
category of distributions of measurement error in the context of atmospheric measurement
(scatterometers might be considered one of the rare exceptions that would require a different
special treatment). For a symmetrical unimodal distribution the centers of all the component
Gaussians are collocated at the symmetry center of the composite distribution, which allows
the resulting composite distribution to be written as a Laplace transform.

A closely related transform, which we shall refer to as the ‘heat kernel transform’ provides
an interpretation of the Laplace transform representation in the form of an idealized physical
analogue – the outcome of a spatially homogeneous diffusion process forced by a point source
of heat injected at a rate measured as a function of age before the reference time, by an accom-
panying heating or forcing profile. The main advantage of this approach is that asymmetric
distributions, that is, distributions exhibiting some degree of skewness that cannot be accom-
modated directly by the Laplace transform framework, can nevertheless be dealt with within
the framework of the heat kernel transform by allowing mobility of the location of the effective
heat source as a function of age. A secondary advantage is, of course, that the specification of
any nonnegative heat profile, mobile or not, automatically guarantees that the resulting distri-
bution at the reference time (as well as at all preceding times) is indeed a positive Gaussian
mixture (the impulse response, or Green’s function, of forced diffusion being a Gaussian).

A third important integral transform serving to characterize features of a probability distri-
bution is the Fourier transform of the density. The application of this transform to the density
function produces the characteristics function, which is also referred to as the moment generat-
ing function since the evaluation of its derivatives at the origin essentially yield the successive
moments of the density distribution when these moments exist. The derivatives of the logarithm
of the characteristic function correspondingly yield the successive cumulants, which play an es-
pecially important role in some of the asymptotic descriptions of distributions that facilitate
their accurate numerical approximation. We shall see shortly how these integral transforms,
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together with the trivial transforms that express a change in variables, relate to one another.
The central challenge we address in this note is to single out from the multitude of possi-

bilities a tightly constrained but compellingly natural family of densities describable as non-
negative Gaussian mixtures with generally heavier tails than the Gaussian, yet accommodating
the Gaussian as a limiting special case. The family must fulfill the requirement that the new
distributions will serve as a convenient and trouble-free substitute for the Gaussian model in
a variational data assimilation so that the progressive and continuous contamination of gross
error in the measurements is largely solved through the optimization machinery of the varia-
tional assimilation itself. This method of Bayesian, or nonlinear quality control was proposed
by Purser (1984) and has been developed since for use in operational data assimilation (Lorenc
and Hammon 1988, Andersson and Järvinen 1999).

By trouble-free we allude to the problems associated with many existing probability models
used in variational nonlinear quality control where their introduction into the variational assim-
ilations has often led to multiple minima and a difficulty in locating the proper solutions during
the cost function minimization. Problems of this kind are theoretically solved, regardless of
the shapes of the error distributions of the measurements, by the formal inclusion within the
variational problem of an appropriate so-called loss model, a topic whose deeper investigation
we reserve for the companion note (Purser et al. 2012). Our approach here is, instead, to
constrain the form of our principal family of generalized distributions to retain the crucial geo-
metrical property that prevents multiple minima from ever appearing – namely, the convexity
of the negative-logarithm of each probability density of the independent measurememt errors.
For relatively large errors, we further narrow down our choices by requiring that the log-density
falls off asymptotically according to a power law, ≈ |x|c. In the Gaussian case the power law
behavior is just quadratic, of course, so the characteristic exponent, c, we seek for a heavy-tailed
distribution must be less than two. But since it must also not fall below one if we are to retain
convexity, we are naturally led to identify this critical limiting case, an asymptotic power law
with unit exponent, c= 1, as a further restriction imposed on our family of densities. The sim-
plest model of this type comprises the back-to-back exponential distribution, often referred to
as the Laplace distribution (Johnson and Kotz, 1970) whose logarithm is exactly proportional
to the absolute magnitude of the error itself. But the discontinuity of the derivative at the
origin disqualifies this density from consideration as a natural model for measurement errors.
Smoothing this logarithm by convolution with a suitable kernel would redeem the probability
model, however, so the question we then face is: how should we choose the smoothing kernel?
For technical reasons discussed in a later section, we desire a kernel whose tails decay asymptot-
ically at least as fast as an exponential, rather than an algebraic rate; but the Gaussian, which
fulfills this requirement, is found through an examination of the Laplace and heat transforms
of the resulting density, to lead to a discontinuous heating profile that we can hardly accept
as natural. Our choice of smoothing kernel is actually rather obvious – we choose whichever
kernel emerges when we exponentiate the smoothed negative-absolute-value function. In effect,
the archetypal exemplar of the heavy-tailed symmetric density function thus implicitly suggests
itself through its dual role as smoothing kernel and as the product (after applying the expo-
nential function) of that smoothing when starting out with the unsmoothed chevron function,
g(x) = −|x|.

Known as the logistic or sech-squared distribution (Johnson and Kotz, 1970) the function
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that uniquely solves this prescription serves as the principal representative of our symmetric
family of heavy-tailed distributions, and each alternative symmetric member of the family can
then be obtained from it by raising its values to some positive exponent (and renormalizing).
The limit where the exponent tends to zero recovers (after rescaling) the shape of the Laplace
density; the limit where the exponent goes to infinity recovers (after rescaling) the Gaussian.
Generalizing this one-parameter family to skewed densities is simply a matter of multiplying
each appropriate symmetric member by an exponential function of the product of the error
times a second parameter.

If we wish to extend the family to distributions whose far tails approximate a different
positive power law for the negative-log-probability, we can still fix the representative symmetric
member of this new branch by convolving the pure power function with the logistic smoothing
kernel, and take the exponential of the resulting function. This will, once normalized, provide
the standard representative of this new branch. Heavier or ligher tailed variants can then
be obtained by raising this function to a power smaller than or greater than one respectively.
When the power law governing the asymptotes of this generalized branch of the family implies a
slowing rate of decline of the tail densities relative to the logistic density, then the logarithms of
the distributions of this family will no longer possess the reassuring convexity property. In this
case, the skewed generalizations cannot be obtained simply by multiplying by an exponential
function because the result would be a function whose tail would eventually grow unboundedly
on the side of positive skew. Instead, as we show in a later section, the properties of the Laplace
and heat transforms come to the rescue in these cases and allow us to generalize the skewing
procedure in a way that is natural and perfectly consistent with what is done to transform the
logistic (or powers of the logistic) function into its skewed variants. The density resulting from
this generalized skewing procedure remains a smooth continuous and positive Gaussian mixture
as a direct consequence of the manner in which the procedure is formulated.

Owing to the importance for this development of the various integral transforms we have
mentioned above, we give this topic some space in the following section. Section 3 explains
the principles and reasoning guiding the criteria we adopt to prescribe the natural family of
broad-tailed error distributions, confirming that the principal member of the branch whose
asymptotes obey the unit-exponent power-law is indeed the logistic distribution, and goes on to
provide a mathematical characterization of the functional forms of the densities of this branch,
their important integral transforms and some asymptotic approximations they obey in the
parameter range that brings these functions close to the Gaussian limiting form. Section 4
treats the skewed generalization of this family. Section 5 tackles the task of then extending the
family consistently to include asymptote exponents that differ from the c= 1 possessed by the
family of functions constructed in sections 3 and 4. Section 6 concludes with a discussion of
these densities in the context of data assimilation and the implicit effective quality control of
seriously errant observations that these functions provide.

2. Integral transforms, moments, and cumulants in the context of continuous

Gaussian mixtures

(a) Notation and transform definitions
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We shall employ a notation for the various interrelated density functions, their transforms,
and their logarithms such that the suffix following the function name indicates the domain
in which it applies. The doubly infinite domain (−∞,∞) of the scalar error, x, will thus be
denoted by the suffix, ‘X’, when we describe a probability density function, fX(x), for example,
while a function of this kind that is symmetric about the origin allows us to use the change
of variable, z = x2, and describe the same function equivalently by fZ(z) = fX(

√
z) on the one-

sided domain z ∈ [0,∞). If we can assume that fX(x) is the superposition (either discrete or
continuous) of various Gaussians centered at x= 0, then we can equally assume that fZ(z) has
a Laplace transform representation:

fZ(z) =

∫

∞

0
e−zsFS(s) ds, (2.1)

with the domain of the conjugate transform variable s taken always to be s≥ 0, and where
FS(s) may include impulsive (δ-function) components or other generalized functions (Schwartz
1966).

fM(m) fK(k) fX(x) fZ(z)

FT(t) FS(s)

Figure 1. Interconnections among the domains linked through the various integral transforms discussed in
Section 2. Dashed links indicate local change of variable transforms, while the integral transforms proper are
shown in bold. Arrows show the directions in which the Laplace and heat transforms are guaranteed to provide
a solution, f , for virtually all possible forcings, F , but transforms in the opposite direction depend upon a

sufficiently well-behaved f .

If we make the substitution,

t=
1

4s
, (2.2)

so that,

ds= − 1

4t2
dt, (2.3)

we can rewrite the Laplace transform in terms of what we shall call the heat kernel transform:

fX(x) =

∫

∞

0

[

1√
4πt

exp

(

−x2

4t

)]

FT(t) dt, (2.4)

where

FT(t) =

√
π

2t3/2
FS

(

1

4t

)

. (2.5)
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If Φ(t) defines the Heaviside function (e.g., Schwartz 1966),

Φ(t) =

{

0 : t < 0
1 : t > 0

, (2.6)

then the centered heat kernel,

WXT(x, t) =
Φ(t)√
4πt

exp

(

−x2

4t

)

, (2.7)

appearing in (2.4) satisfies the (adjoint-) diffusion equation with unit diffusivity:

∂

∂t
WXT(x, t) =

∂2

∂x2
WXT(x, t), t > 0, (2.8)

and integrates over x to unity for all t > 0.
The transform (2.4) is just a particular case of the general integral transform:

fA(a) =

∫

WAB(a, b)FB(b) db, (2.9)

where the integral is over a suitable domain. Obviously, the Laplace transform itself fits this
style with the kernel being defined:

WZS(z, s) = Φ(s)e−zs, (2.10)

but, less obviously, a local change of variables or a function rescaling can also be thought of
as defining an integral transform of a relatively trivial kind in which the kernel comprises a
generalized function. Thus, transforming from fX(x) to fZ(z) and from FS(s) to FT(t) we might
legitimately construct transforms with the kernels,

WZX(z, x) ≡ Φ(z)δ(x −
√
z), (2.11a)

WTS(t, s) ≡
√
π

2t3/2
Φ(t)δ(s − 1

4t
), (2.11b)

respectively. We shall refer to trivial transforms of this kind as local transforms. Unlike the
Laplace and heat transforms, which allow us always to go from the F source functions to the
f functions, but not always the other way around, the local transforms are always reversible.
But a very important nontrivial integral transform that is, for all practical purposes, always
invertible is the Fourier transform. It enables us to construct from any given density, fX(x), the
corresponding characteristic, or moment generating function, fK(k), and vice versa, according
to the transform pair that we can choose to define generally,

fK(k) =

∫

∞

−∞

exp(−ikx)fX(x) dx, (2.12a)

fX(x) =
1

2π

∫

∞

−∞

exp(ixk)fK(k) dk, (2.12b)
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or, in the special but important case of symmetric functions:

fK(k) =

∫

∞

−∞

cos(kx)fX(x) dx, (2.13a)

fX(x) =
1

2π

∫

∞

−∞

cos(xk)fK(k) dk. (2.13b)

For any real and symmetric fX(x), the function fK(k) is then also a real and symmetric
function, which suggests, by analogy to the relationship between x and z, that we try the
change of variables transform, m= k2, and thus fM(m) = fK(

√
m). Consider the form of the

integral transform that expresses fM(m) in terms of FT(t). We combine the heat, and the Fourier
transforms:

fM(m) =

∫

∞

x=−∞

∫

∞

t=0

1√
4πt

exp
(

−i
√
mx− x2/4t

)

FT(t) dt dx

=

∫

∞

−∞

1√
4πt

exp

(

−
(

x√
4t

+ i
√
mt

)2
)

dx

∫

∞

0
e−mtFT(t) dt

=

∫

∞

0
e−mtFT(t) dt. (2.14)

Thus, the same heating profile function FT(t) that forces the heat kernel transform for fX(x) also
serves as the forcing of a Laplace transform for fM(m) = fK(

√
m). As a direct consequence of

this duality we infer that fK(k) must have a heat transform representation, with kernel WXT(k, s)
forced by,

F̂S(s) =

√
π

2s3/2
FT(

1

4s
) = 2πFS(s), (2.15)

or, equivalently, a transform with heat kernel,

WKS(k, s) = 2πWXT(k, s) (2.16)

and with FS(s) itself as the forcing.
A convenient diagram of all these transforms is shown in Fig. 1 with the local transforms

shown as the dashed links and the nonlocal integral transforms shown as the solid links among
the six nodes standing in for the domains we have subscripted, X, Z, S, T,M, K. Arrows show the
direction in which the nonlocal transforms work when the inverse transforms are not guaranteed
to.

When the Laplace transforms can be inverted, the inversion formula involves the complex
Bromwich integral, for example:

FS(s) =
1

2πi

∫ c+i∞

c−i∞
esz fZ(z) dz, (2.17)

where the contour in the complex z domain must pass rightward of all the finite poles and branch
points of function fZ(z) that is assumed to have been consistently analytically continued into
the complex plane. If c= 0 satifies the aforementioned stipulation regarding the singularities,
then the change of variable, z = iw, puts (2.17) into the standard form for a (complex) Fourier
transform.
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(b) Convolution theorems

Associated with each of the nonlocal integral transforms is a convolution theorem.
Theorem 1 (Convolution theorem for Fourier transforms)
If the functions fX(x), gX(x), hX(x), are connected by transforms (2.12a) and (2.12b) to

fK(k), gK(k), hK(k), respectively, and if

hX(x) =

∫

∞

−∞

fX(x− x′)gX(x
′) dx′ ≡ fX ⋆ gX(x), (2.18)

then
hK(k) = fK(k)gK(k). (2.19)

Conversely, if instead,

hK(k) =

∫

∞

−∞

fK(k − k′)gK(k
′) dk′, (2.20)

then
hX(x) = 2πfX(x)gX(x). (2.21)

2

Theorem 2 (Convolution theorem for Laplace transforms)
The convolution theorem for Laplace transforms states that, if fZ(z) and gZ(z) are respec-

tively the transforms forced by FS(s) and GS(s), then

hZ(z) = fZ(z)gZ(z) =

∫

∞

0
e−szHS(s) ds, (2.22)

where

HS(s) = FS ⋆ GS(s) ≡
∫ s

0
FS(s

′)GS(s− s′) ds′. (2.23)

2

Theorem 3 (Convolution theorem for centered heat kernel transforms)
Suppose fX(x) is the heat transform of FT(t) and gX(x) is the corresponding heat transform

of GT(t). Then if the function hX(x), is the x-convolution of fX and gX:

hX(x) = fX ⋆ gX(x) ≡
∫

∞

−∞

fX(x− x′)gX(x
′) dx′, (2.24)

we can derive hX(x) as the centered heat transform of some HT(t) where,

HT(t) = FT ⋆ GT(t) ≡
∫ t

0
FT(t− t′)GT(t

′) dt′. (2.25)

2

Theorems 1 and 2 are standard results readily obtained by factoring the exponential kernels;
the heat kernel transform is not standard, so we indicate the proof of theorem 3 as follows.

Proof of theorem 3:

The proof stems from the fact that, for any two positive t1 and t2:
∫

∞

−∞

WXT(x− x′, t1)WXT(x
′, t2) dx

′ =WXT(x, t1 + t2). (2.26)
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2

(c) Moments and cumulants

The qth moment of a distribution, fX(x) , is defined:

χq =

∫

∞

−∞

xqfX(x) dx. (2.27)

It immediately follows from (2.12a) that

χq = iq
dq

dkq
fK(k)

∣

∣

∣

∣

k=0
. (2.28)

The moments of odd degree of a symmetric distribution vanish. Then,

χ2q = (−)q
d2q

dk2q
fK(k)

∣

∣

∣

∣

∣

k=0

= (−)q
(2q)!

q!

dq

dmq
fM(m)

∣

∣

∣

∣

m=0

. (2.29)

When we consider that, in the context of fX(x) being some Gaussian mixture probability model,
then associated distributions FS(s) and FT(t) can be regarded themselves as probability densi-
ties; they quantify the preselection probability for the parameter (the s or t) that determines, in
each realization, which Gaussian is picked as the effective population distribution for the final
selection of the random variable associated with x. Thus, in synthesizing random variables
possessing the distribution fX(x) we are equally concerned with characterizing the preselection
probability models, FS(s) and FT(t), and this characterization includes an understanding of
their first few moments. Differentiating the Laplace transform formula q times at the origin:

∫

∞

0
sqFS(s) ds= (−)q

dq

dzq
fZ(z)

∣

∣

∣

∣

z=0
, (2.30)

reveals that fZ(z) serves as an effective moment-generating function for the probability density
described by FS(s). By duality, fM(m) likewise serves as an effective moment-generating function
for the distribution, FT(t). From this latter identification, combined with (2.29), we deduce:

Theorem 4

If we denote by χ2q the 2qth moment of the symmetric distribution fX(x) composed as the
Gaussian mixture described by the heat transform forced by FT(t), and if we denote by τq the
qth moment of FT(t), i.e.,

τq =

∫

∞

0
tqFT(t) dt, (2.31)

then:

χ2q =
(2q)!

q!
τq. (2.32)

2

Remark:

The factor, (2q)!/q! is sometimes written (2q − 1)!!2q , where, for positive odd (2q − 1), the
double-factorial notation is used to express the stride-two products,

(2q − 1)!! ≡ 1.3.5 . . . (2q − 1). (2.33)
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The distribution of the sum of a set of independent random variables has density given by the
convolution of the densities corresponding to this set, and therefore the resulting characteristic
function is the product of the characteristic functions of this set (by the Fourier convolution
theorem). While this allows one to obtain the moments of the resulting distribution from
the successive derivatives of this product characteristic function, for the purposes of studying
the asymptotic behavior of sums of large numbers of independent random variables, especially
those that are identically distributed, an alternative combination of the moments that behaves
additively is often more directly informative. Clearly such quantities are obtained when the
function whose derivatives we take at k =m= 0 is the logarithm of the characteristic function,
and the corresponding evaluations at each degree are then called the cumulants of the density
distribution. As with the moments themselves, the odd-degree cumulants vanish for a symmetric
distribution. If we denote the cumulants of fX(x) by χ̂q, so that, by analogy with (2.28) we
have

χ̂q = iq
dq

dkq
ln[fK(k)]

∣

∣

∣

∣

k=0
, (2.34)

then, since, for symmetric densities, ln[fM(m)] also serves as the cumulant generating function
for these χ̂q as well as for the cumulants, τ̂q of the corresponding FT(t), the cumulant version
of (2.32) in theorem 4 immediately follows.

The moments are expressed in terms of the cumulants by the succession of formulae:

χ1 = χ̂1, (2.35a)

χ2 = χ̂2 + χ̂2
1, (2.35b)

χ3 = χ̂3 + 3χ̂1χ̂2 + χ̂3
1, (2.35c)

χ4 = χ̂4 + 4χ̂1χ̂3 + 3χ̂2
2 + 6χ̂2

1χ̂2 + χ̂4
1, (2.35d)

χ5 = χ̂5 + 5χ̂1χ̂4 + 10χ̂2χ̂3 + 10χ̂2
1χ̂3 + 15χ̂1χ̂

2
2 + 10χ̂3

1χ̂2 + χ̂5
1, (2.35e)

. . .

χm =
∑

a1+2a2...+mam=m

M3(m; a1, . . . , am)[χ̂1]
a1 [χ̂2]

a2 . . . [χ̂m]am , (2.35f)

where the Faà di Bruno coefficient in the general term is the combinatorial partition function,
M3, defined in Abramowitz and Stegun (1972, page 831) by:

M3(m; a1, . . . , am) =m!/(1!)a1a1!(2!)
a2a2! . . . (m!)amam! . (2.36)

If we let χ̃q denote the central moments about an origin for x chosen to make the first moment
vanish, then, assuming the density is normalized, χ0 = 1:

χ̃q =
q
∑

r=0

(−)r
(

q

r

)

[χ1]
rχq−r, (2.37)

and the set of formulae defining the cumulants in terms of these central moments can be
recovered recursively by symbolic manipulations inverting (2.35a) . . . , etc., and substituting
(2.37):

χ̂1 = χ1, (2.38a)
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χ̂2 = χ̃2, (2.38b)

χ̂3 = χ̃3, (2.38c)

χ̂4 = χ̃4 − 3χ̃2
2, (2.38d)

χ̂5 = χ̃5 − 10χ̃2χ̃3, (2.38e)

. . .

and so on. (More extensive tables of these results are given in Kendall and Steward 1977.) We
shall later employ the cumulants of our densities to construct asymptotic approximations of
them when they become sufficiently close to the Gaussian shape; for the limiting case of the
Gaussian itself, the cumulants beyond degree 2 all vanish.

(d) Heat kernel transforms when fX(x) is asymmetric

The nonnegative symmetric Gaussian mixture is obtained when FT(t) ≥ 0. In order to
accommodate skewness we preserve the feature that the heat source is a single point at any
given time, but we allow this point mobility in time by ascribing to it a definite trajectory.
Then the generalized heat kernel transform is defined:

fX(x) =

∫

∞

0

1√
4πt

exp

(

−(x− x̂(t))2

4t

)

FT(t) dt, (2.39)

where x̂(t) defines the trajectory location of the heat source at a time t in the past. (recall
that t is to be thought of as the age characterizing this Gaussian component of the transform.)
For the resulting function fX to be a proper probability density, it must integrate to one; this
is equivalent to requiring that the heating in the diffusion model, integrated over all ages, t, is
also one:

∫

∞

0
FT(t) dt = 1. (2.40)

We have established how the Gaussian might be generalized to heavy-tailed, and possibly
skewed distributions having (like the Gaussian) infinite support over x, by modeling the con-
struction of such distributions on problems in heat diffusion forced by a mobile point source of
nonnegative heating acting over all past time. But in order to construct a useful parameterized
family of distributions of this kind we must decide on the rules for the determination of the
heating function, FT(t), and the corresponding rules for the construction of the trajectory, x̂(t),
in the cases of distributions with skewness. We seek to determine these rules in a way that
seems most natural and self-consistent, as we explain in the next section.

3. A simple family of symmetric heavy-tailed distributions with advantageous

features for the representation of measurement error

(a) Guiding principles and a self-referential procedure for constructing the reference example
of a smooth density with prescribed exponential-power-law tails

The standard unit-variance Gaussian, which is generated by the centered heat kernel trans-
form when FT(t) = δ(t− 1/2), has the convex function, x2/2 for its negative-logarithm (ignoring

11



{x1,y[x1]}

{x2,y[x2]}
{x1+a[x2 - x1],y[x1+a[x2 - x1]}

{x1+a[x2 - x1],y[x1] + a[y[x2] - y[x1]]}

 x

y

Figure 2. Schematic depiction of the property of convexity of a function y(x). Although the function shown is
convex to the left of x2, it is clearly not convex in places sufficiently to the right of this point.

any additive constant). Convexity is the property, illustrated schematically in Fig. 2, that en-
sures that, for any pair of arguments, x1 and x2, and any number a in [0, 1], the convex
function y(x) obeys: y(x1 + a(x2 − x1)) ≥ y(x1) + a(y(x2) − y(x1)). Convexity of negative-log-
probability densities is a useful guarantee that any arbitrary multiplicative combination of these
densities remain unimodal. (Essentially, we exploit the property that sums of convex functions
are necessarily convex.) This is an important consideration in the data assimilation context
where the posterior probability formed by the combination of independent measurements and
background information is such a product. This suggests that, at least to begin with, we
should seek heavy-tailed generalizations which preserve the property of convexity. The simple
power-law behavior of the log-Gaussian form does not completely carry over in any smooth
heavy-tailed distribution because the general exponent, c, in the log-probability needs to be
smaller that the Gaussian’s c= 2 in order for the tails to be asymptotically heavier, which
in turn means that the distribution profile possesses an undesirable singularity in its second
derivative at the origin. However, it is perfectly acceptable to preserve the c < 2 power law
behavior asymptotically at large |x|, in which case, convexity can be preserved provided c≥ 1.
The choice c= 1 is therefore attractive because it provides maximal opportunity to fatten the
tails while preserving convexity. This power law aymptotic behavior is taken as a desidera-
tum as we take the first step towards a parameterized generalization of the distributions that
describe observation errors.

Another property of the Gaussian family that we can seek to preserve in our initial gener-
alization is the closure with respect to positive exponentiation; we can raise the function, e−x2

,
to any positive power and still recover a Gaussian, because the multiplication of the logarithm
of this function by any positive number will preserve the original parabolic form. Likewise, for
the symmetric heavy-tailed generalizations for each asymptotic shape index, c, we can hope to
find a logarithmic form preserved under multiplication by an arbitrary positive factor, b. But
we need to establish a systematic way to round the aforementioned singularity at the origin for
all c, and in such a way that convexity is manifestly preserved for the cases c≥ 1 capable of

12



supporting a convex negative-log-probability.
It is helpful to apply the integral transform formalism to the logarithm gX(x) and gZ(z) of

the density function fX(x) and fZ(z), but in this case we must confront the obstacle that the
range of the transforms is infinite. This difficulty is resolved by modifying the transform kernels,
ŴZS(z, s) =WZS(z, s) − 1 and ŴXT(x, t) =WXT(x, t) − 1, which, being equivalent to evaluating
the transforms, gZ(z) − gZ(0) and gX(x) − gX(0), enables finite results to be extracted even in
some cases where the Laplace and heat transform forcings have infinite integrals. For the
example of the unsmoothed power law formula characterized by an exponent, c ∈ (0, 2), then:

gX(x) = ln fX(x) = −|x|c, (3.1a)

gZ(z) = ln fZ(z) = −zc/2, (3.1b)

and the modified Laplace transform representing this case is given by the following expression
involving the gamma function.

Theorem 5

gZ(z) = −zc/2 =

∫

∞

0
(e−sz − 1)ĜS(s) ds, (3.2)

with

ĜS(s) = − 1

Γ(−c/2)s
−(1+c/2). (3.3)

2

Proof of theorem 5

For z > 0, s > 0 and c ∈ (0, 2) let function J be defined:

J(z) =

∫

∞

0
(1 − e−sz)s−(1+c/2) ds > 0 (3.4)

The two inequalities:

1 − e−sz < 1,

1 − e−sz < sz

imply

J(z) <

∫ 1/z

0
szs−(1+c/2)ds+

∫

∞

1/z
s−(1+c/2)ds

=

(

1

1 − c/2
+

1

c/2

)

zc/2

→ 0, as z→ 0.

So the result is established at the end point z→ 0.
We take the z-derivative of J(z) to produce the more standard Laplace transform:

dJ

dz
= −

∫

∞

0
e−szs−c/2 ds

13



= −zc/2−1
∫

∞

0
e−s′s′−c/2 ds′

= −zc/2−1Γ(1 − c/2)

=
c

2
zc/2−1Γ

(−c
2

)

=
d

dz
zc/2Γ

(−c
2

)

,

and the result is therefore established for all z ≥ 0 by continuity.
2

Remarks

The fact that the coefficient, −1/Γ(−c/2), is positive leads to the following theorem de-
scribing the Laplace transform of the exponential of the gZ(z) of theorem 5:

Theorem 6

The function,
fZ(z) = exp(gZ(z)) ≡ exp(−zc/2), (3.5)

for 0< c < 2 has a Laplace tranform representation,

fZ(z) =

∫

∞

0
e−szFS(s) ds, (3.6)

with FS(s)> 0 ∀s > 0.
2

Proof of theorem 6

From theorem 5 the positive, but monotonic-decreasing function, (3.3), can be split into
two nonnegative parts:

ĜS(s) = ĜS1(s) + ĜS2(s), (3.7)

where,

ĜS2(s) =

{

ĜS(1) : s≤ 1

ĜS(s) : s≥ 1
, (3.8)

has a finite integral, say I2, over all s > 0 and is positive there (the integral of its complement,
ĜS1(s), is infinite, however). Thus ĝZ2(z) = gZ2(z) + I2 is the conventional (unmodified) Laplace
transform of ĜS2(s). Expanding the exponential as a series:

exp[ĝZ2(z)] = 1 + ĝZ2(z) + . . .
1

n!
ĝn

Z2(z) . . . (3.9)

and invoking the Laplace transform convolution theorem 2 term by term for the powers of
ĝZ2(z) proves that,

fZ2(z) = exp(−I2) exp[ĝZ2(z)]

=

∫

∞

0
e−zsFS2(s) ds (3.10)

with FS2(s)> 0, ∀s > 0.
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The infinite integral of ĜS1(s) introduces a subtlety that requires a slightly different treat-
ment when we exponentiate and characterize FS1(z). Consider the ŝ-parameterized modification
to ĜS1(s) defined by modulating it with the Heaviside function,

ĜS1(ŝ; s) = Φ(s− ŝ)ĜS1(s), (3.11)

so that the corresponding unmodified Laplace transform of it gives the finite integral for each
ŝ > 0:

gZ1(ŝ; z) =

∫

∞

0
e−zsĜS1(ŝ; s) ds=

∫

∞

ŝ
e−zsĜS1(s) ds. (3.12)

Then, as before, we obtain a series expansion

exp (gZ1(ŝ, z) − gZ1(ŝ; 0)) = FS1(ŝ; s) = exp(−gZ1(ŝ; 0))
∞
∑

n=0

1

n!
gn

Z1(ŝ; z). (3.13)

and infer, in this case, that FS1(s) ≥ 0 ∀s > 0. By continuity, this result must also hold in the
limit, that is, FS1(ŝ; s) → FS1(s) ≥ 0 ∀s > 0.

Now since fZ(z) = exp[gZ(z)] = fZ1(z)fZ2(z) the convolution theorem gives:

FS(s) = FS1 ⋆ FS2(s) (3.14)

and, since FS2(s)> 0 and FS1(s) ≥ 0, then FS(s)> 0 provided there is no ŝ > 0 such that FS1(s) =
0 ∀s < ŝ. But we can be sure that there is no such positive ŝ because, if there were, then FS(s)
itself would be subject to the some property and the function fZ(z) would then necessarily
decrease faster than e−zŝ as z→∞, which is clearly in contradiction with actual rate of decrease
of fZ(z) given by (3.5) when c < 2. Thus, the result is established.

2

In the case where c= 1 the solution for the transform yielding gZ(z) is:

gZ(z) ≡−z1/2 =

∫

∞

0
(e−sz − 1)

s−3/2

2
√
π
ds (3.15)

and, in this special case, the corresponding transform yielding fZ(z) has an analytic expression:

fZ(z) ≡ exp(−z1/2) =

∫

∞

0
e−sz 1

2
√
πs3/2

exp

(

− 1

4s

)

ds, (3.16)

as is shown in Appendix A through a direct application of the heat diffusion equation.
However, for the general choice of c ∈ (0, 2), although we can guarantee that it is positive

for all s, an expression for FS(s) in elementary functions is not possible. In terms of the heat
kernel transform, the case c= 1 translates to:

gX(x) ≡−|x| =
∫

∞

0

1√
4πt

(

exp

(

−x
2

4t

)

− 1

)

2 dt, (3.17)

i.e., a uniform heating profile of intensity 2 units. For the corresponding fX(x) we have:

fX(x) ≡ exp(−|x|) =

∫

∞

0

1√
4πt

exp

(

−x
2

4t

)

2 exp(−t) dt. (3.18)
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Figure 3. The locus of images in the skewness-kurtosis plane of a family of skewed and heavy-tailed distributions.

Perhaps the simplest way to smooth a function, gX(x), is to convolve it with a Gaussian,
which is equivalent to translating its corresponding heat profile function, GT(t), by an ap-
propriate fixed aging increment, ∆t, of t. For example, for a convolution with the Gaussian,
(1/

√
π) exp(−x2), a t-translation by an amount, ∆t= 1/4, needs to be made. For the case c= 1

the resulting smoothed gX becomes proportional to the integrated complementary error func-
tion, ierfc(x), which is defined in Abramowitz and Stegun (1972). But the salient feature of such
a t-translation on the corresponding Laplace transform is to set a maximum value, s= 1/(4∆t),
beyond which the smoothed function’s corresponding GS(s) vanishes. Unfortunately, when this
smoothed function gX(x) is then exponentiated to get the corresponding smoothed fX(x) we
find that this FS(s), while now positive for all t > 0, exhibits a rather unnatural rippled profile
and cannot therefore be considered a compelling candidate for a natural heavy-tailed general-
ization of the Gaussian itself. In spite of its unnaturalness, this Gaussian-smoothed function
gX(x) does at least preserve convexity, but it is easy to see that convolution with any positive
bell-shaped smoothing kernel must also preserve the convexity of gX(x). A convexity-preserving
generalization to an asymmetric distribution is obtained simply by adding to the symmetric
gX(x) a function linear in x (but not so steep that it would cause the positive-skew tail to grow
with |x| instead of decaying).

It is useful to know what domain of the skewness-kurtosis plane is covered in the probability
model constructed in this way. Figure 3 shows this domain when the smoothing kernel used
to obtain gX(x) from −|x| possesses exponentially decreasing tails. The upper segment of the
boundary represents the distributions comprising the sub-family of back-to-back exponentials,
sometimes referred to as asymmetric Laplace distributions (Kotz et al. 2001), and which in-
cludes the true Laplace distribution as the only symmetric example. The endpoints have a
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kurtosis of 9 and a skewness of ±2. The lower segment of the boundary comprises the images
in the skewness-kurtosis plane associated with the distributions formed from positive powers of
the Gumbel (or Fisher-Tippett Type-1) distribution. The Gumbel distribution is,

f(x) = exp(x− exp(x)), (3.19)

in the case of a negative skew, or,

f(x) = exp(−x− exp(−x)), (3.20)

in the case of a positive skew. The Gaussian distribution itself is found at the minimum-kurtosis
point on this bounding curve. It is noteworthy that, while all the distributions represented
by the interior points of this region are expressible as Gaussian mixtures, the limiting cases
mapping to the lower boundary, that is, the powers of Gumbel distributions, are not themselves
expressible as the mobile point-forced Gaussian mixtures we have discussed. Nevertheless, this
family of generally skewed, but minimal kurtosis distributions is found to bound a great many
different families of Gaussian mixtures that, with controllable kurtosis and skewness, have a
logarithm whose graph is also expressible as a convolution of the chevron function, −|x|, with
some symmetric bell-shaped function that has exponentially diminishing tails. Having this
family of exponentiated Gumbel distributions as bounding the limiting cases will be taken as
an additional goal to guide us in our quest for the formulation of heavy-tailed generalizations of
the Gaussian. This additional desideratum turns out to exclude those bell-shaped smoothing
kernels whose tails diminish at only an algebraic rate (i.e., slower than exponential), such
as the otherwise attractive functions proportional to 1/(1 + x2)q, for some q > 1/2. The fact
that the logarithm of a symmetric member of this generalized family might be found as the
convolution of −|x| with a non-Gaussian bell-shaped function with exponential tails suggests
an obvious recursive solution; let this bell-shaped convolving function be identical (apart form
normalization) to the exponential of the result of this same convolution. Other symmetric
members of this family can then be obtained from this self-consistent bell-shaped function by
raising it to whichever positive power produces the desired exponential rate of decrease of the
far tails.

We know that, since the asymptotic derivatives of any gX(x) will be ∓1 at ±∞, and since
the gX that we want must be convex, a proper probability density (one that is non-negative and
integrates to one) will always be found as half of the second derivative of this gX(x). Let fX(x)
be this proper density associated with gX(x). The simplest additional assumption is that:

fX(x) = exp(gX(x)), (3.21)

so that a defining condition for the basic representative gX(x) is the differential equation:

g′′
X
(x) = −2 exp(gX(x)). (3.22)

A simple numerical iteration, which provides a computational solution, is worth describing.
For clarity, we shall temporarily drop the suffix X, it being understood that at each stage the

iterations of g and f can, if needed, be decomposed as a heat transform. Let us start, for iter-
ation zero, with a g(0)(x) = −|x| and, for any stage n of the iteration, define the corresponding
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Figure 4. Successive iterations of the bell-shaped distribution, f(n)(x), converging to f(∞)(x).

f(x) by,

f(n)(x) =
exp(g(n)(x))

∫

∞

−∞
exp(g(n)(x′)) dx′

. (3.23)

Then we twice integrate the condition:

g′′(n+1)(x) = −2f(n)(x), (3.24)
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choosing the two integration constants such that

lim
x→±∞

g(n+1)(x) + |x| = 0. (3.25)

The first few iterations for f(n)(x) obtained by this procedure, together with its theoretical
limit, are shown in Fig. 4. The final solution for g(x) is shown in Fig. 5.

We deduce that the solution does indeed contain only positive contributions in its heat
transform, or equivalently, in its Laplace transform under the usual z = x2 substitution. This is
because the starting iterate has this property and the subsequent iterations can only thereafter
generate further positive Laplace transform contributions (the double integration of g′′(n+1) can
be regarded as a convolution of 2f(n) with g(0); the operation of exponentiation is interpreted
through its power series expansion and application of the convolution theorem for Laplace
transforms). It remains to determine the analytic form of the converged solutions for g(x) =
g(∞)(x) and f(x) = f(∞).

Theorem 7

The symmetrical solution to
g′′(x) = −2 exp(g) (3.26)

with the asymptotic limits as stated above is:

g(∞)(x) = ln(f(∞)(x)) = ln

(

1

4 cosh2(x/2)

)

≡ ln

(

1

4
sech2(x/2)

)

. (3.27)

2
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Proof of theorem 7:

Multiply both sides by g′ to obtain:

1

2
[(g′)2]′ = −2[exp(g)]′ (3.28)

hence,

g′ = −2(exp(g0) − exp(g))1/2

= 2 exp

(

g0
2

)

[1 − exp(g − g0)]
1/2, (3.29)

for some constant g0. Substituting

y = exp

(

g − g0
2

)

, (3.30)

so that

dg =
2 dy

y
, (3.31)

we obtain,
∫

dy

y(1 − y2)1/2
= exp

(

g0
2

)

(x− x0), (3.32)

for some constant x0. The integral on the left can be solved directly:

∫

dy

y(1 − y2)1/2
= arccosh(1/y), (3.33)

and hence

exp

(

g − g0
2

)

= sech

(

exp

(

g0
2

)

(x− x0)

)

(3.34)

or

g = g0 + ln

[

sech2
(

exp

(

g0
2

)

(x− x0)

)]

. (3.35)

Given that g must be symmetric about x= 0 and that, for large θ, sech2(θ) ≈ exp(−2θ)/4, the
proper asymptotic behavior requires x0 = 0 and g0 = ln(1/4). Whence:

g(x) = ln

(

1

4
sech2

(

x

2

))

. (3.36)

2

While this logistic or sech-squared form, (1/4)sech2(x/2), supplies only a single represen-
tative of our family of heavy-tailed distributions, the possible alternative positive powers of
the sech function allow us to control the degree of kurtosis while maintaining the property
that the distribution remains a positive continuous Gaussian mixture (by theorem 6). A natu-
ral calibration of this shape-controlling exponentiation parameter, which we shall denote b, is
such that b= 1 specifies the unadorned reference solution we have just obtained through the
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self-referential procedure defined and solved in theorem 7. Thus, the more general symmetric
shapes of this family will be exemplified by the functions of the form,

fX(x) = sech2b(x/2), (3.37)

which become proper probablity densities after normalization.
In order to ascertain precisely how the Gaussian mixture of the more general distribution is

constituted, we can perform the appropriate inverse Laplace transform. By rewriting the new
function in the equivalent way,

fX(x) = 22b exp(−bx) (1 + exp(−x))−2b , (3.38)

transforming the variable to z = x2 and correspondingly renaming the function:

fZ(z) = 22b exp(−bz1/2)
(

1 + exp(−z1/2)
)−2b

(3.39)

we can expand it into an infinite series using the binomial theorem:

fZ(z) = 22b
∞
∑

n=0

(2b)n(−)n

n!
exp

(

−(b+ n)z1/2
)

, (3.40)

where the Pochhammer’s symbol, (c)n, (Abramowitz and Stegun 1972, p. 256) is defined for
any real or complex c and any nonnegative integer n:

(c)0 = 1, (c)1 = c, . . . , (c)n = c(c+ 1) . . . (c+ n− 1) ≡ Γ(c+ n)

Γ(c)
. . . . (3.41)

The individual exponential terms in the summation are each similar to the form given in (3.16)
for which the inverse Laplace transform is known. This allows us to express the forcing function
of the Laplace transform:

FS(s) =
22b−1

√
πs3/2

∞
∑

n=0

(2b)n(−)n

n!
(b+ n) exp

(

−(b+ n)2

4s

)

. (3.42)

(Solutions of this form can also be identified with derivatives of the theta functions and modified
theta functions associated with the Jacobian elliptic functions; see Erdélyi and Bateman, 1954,
Vol 1, for the example with b= 1

2 .) We can apply (2.5) to express the new distribution as a
centered heat kernel integral (2.4) with:

FT(t) = 22b+1
∞
∑

n=0

(2b)n(−)n

n!
(b+ n) exp

(

−(b+ n)2t
)

. (3.43)

The numerical execution of approximations to the infinite summations in (3.43) and (3.42) can
become problematic at large s, and small t, especially for b≫ 1. An alternative expression for
the inverse Laplace transform comes from the standard Bromwich integral. Writing z = iw,
this gives us:

FS(s) =
1

2π

∫

∞

−∞

eiwssech2b(
√
iw/2) dw (3.44)
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where the principal branch, ℜ(
√
iw) ≥ 0, is assumed. The corresponding integral for FT(t) is

obtained by applying to (3.44) the transformation (2.5), i.e.,

FT(t) =
1

4
√
πt3/2

∫

∞

−∞

eiw/4tsech2b(
√
iw/2) dw (3.45)
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Figure 6. For the case where b = 0.5, the function fL(iw) is plotted in panel (a), where the solid graph is the
real, the dotted graph the imaginary part. Panel (b) shows the corresponding forcing function, FS(s), for the
Laplace transform. Panel (c) shows the corresponding heating profile, FT(t), in the heat kernel transform for

fX(
√

z).

Figure 6 shows, in panel (a), the complex function fZ(iw) plotted as real (solid graph) and
imaginary (dotted graph) parts as functions of w in the case of b= 0.5. The corresponding
FS(s) is shown in panel (b) and the heating profile, FT(t) for the heat transform is shown in
panel (c). For this very small parameter b the forcing profiles FS(s) and FT(t) are both strongly
skewed in the positive sense, despite the inverse relationship of their abscissae. (They happen
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Figure 7. Like Fig.6, except with b = 1.

to share the same shape in this special case only, as a consequence of the sech function being
its own Fourier transform.) But when the parameter b= 1, we obtain the corresponding set of
graphs shown in Fig. 7, where we see a reduction in the skewness and the suggestion that these
graphs are tending towards a more Gaussian profile. Visual corroboration is obtained when
we examine the corresponding plots for a much larger value of the parameter, b= 20, which
are provided in Fig. 8. The density function fX(x) itself is, of course, also very close to being
Gaussian, and, since the function fZ(iw) is clearly becoming highly oscillatory for such large
values of b, it is desirable to be able to characterize the asymptotic forms of the forcing profiles,
FS(t) and FT(t) in the limit as b→∞ and thereby sidestep the inevitable practical numerical
difficulties associated with either the summation method or the Fourier method as this limit is
approached.
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Figure 8. Like Fig.6, except with b = 20.

For very large values of the parameter, b, it is possible to approximate these integrals
by exploiting the fact that the absolute magnitude of the integrand then peaks sharply at
z = iw = 0 and becomes relatively insignificant beyond a small distance from this point. This
allows the integrand, or more conveniently its logarithm, to be expanded in a locally convergent
Taylor series about this point. Formally:

ln(sech2b(
√
z/2)) = −b

∞
∑

n=1

(22n − 1)

n(2n)!
B2nz

n, (3.46a)

= −bz
4

+
bz2

96
+ O(z3)
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Figure 9. For the case of the parameter having an intermediate magnitude, b = 2, panel (a) shows FS(s) together
with the purely Gaussian approximation to it. Panels (b) and (c) show the comparison with the third-order and
fourth-order Gram-Charlier expansion. Panel (d) shows the significant improvement in the fit obtained by using
the fourth-order Edgeworth expansion instead. The exact FS(s) is shown as a solid curve in each panel, while

the approximation is shown dotted.

=
∞
∑

n=1

(−)n
λ̂n(b)zn

n!
, (3.46b)

where B2n denotes the Bernoulli number of index 2n (see Abramowitz and Stegun 1972, p.810,
for a tabulation of these numbers) and λ̂n(b), as defined above, are the cumulants of the
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TABLE 1. Coefficients of the Hermite polynomials Hn(x) up to
degree n = 9.

n 0 1 2 3 4 5 6 7 8 9

0 1

1 1

2 −1 1

3 −3 1

4 3 −6 1

5 15 −10 1

6 −15 45 −15 1

7 −105 105 −21 1

8 105 −420 210 −28 1

9 945 −1260 378 −36 1

distribution, FS(s), as defined in section 2. For sufficiently large b it is these first two terms
of the expansion (3.46a) that dominate, that is, a Gaussian form of fZ when expressed in the
w variable, and therefore in its transform, FS(s), also. Taking the exponential of (3.46a) and
dividing out the part responsible for the Gaussian enables us to express the perturbation factor
formally:

sech2b(
√
z/2)

exp
(

− bz
4 + bz2

96

) = exp

(

1 +
∞
∑

n=3

(−)nλ̂n(b)zn

)

(3.47)

Expanding terms on the right in successive powers, (−z)n ≡ (d/ds)n, and truncating at some
finite degree, n, enables the resulting series to be interpreted in the s-domain as a corrective
differential operator applied to the Gaussian,

Gb(s) =
1√

2πλ2
exp

(

−1

2

(s− λ̂1)
2

λ̂2

)

. (3.48)

Successive derivatives of a Gaussian are expressed by multiplying that Gaussian by Hermite
polynomials (Koornwinder et al. 2010). For example, the Hermite polynomial of degree m is
defined in the form most convenient for probability theory:

Hm(x) = (−)mex
2/2 d

m

dxm
e−x2/2. (3.49)

Written as

Hm(x) =
m
∑

j=0

Hm,jx
j, (3.50)

the coefficients are found to be, for example:

Hm,j =











(−)m−j(m− j − 1)!!
(m

j

)

: m− j even

0 : m− j odd
, (3.51)
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and satisfy the convenient recursion:

H0,j = δ0j

Hm,j = Hm−1,j−1 − (j + 1)Hm−1,j+1, m > 0.

The coefficients of the first few of these polynomials are listed in Table 1. The resulting
corrective series is known as the Gram-Charlier series (Kendall and Stuart 1977). If we let

σ =
√

λ̂2, and rescale s about the mean, s′ = (s− λ̂1)/σ, then the correction takes the form of
a corrective factor, C, multiplying the approximating Gaussian:

FS(s) ≈ C
1√
2πσ

exp

(

−1

2
s′2
)

, (3.52)

where, up to sixth order, the corrective factor is the expansion,

C = 1 +
λ̂3

3!σ3
H3(s

′) +
λ̂4

4!σ4
H4(s

′) +
λ̂5

5!σ5
H5(s

′) +

(

λ̂6

6!σ6
+

λ̂2
3

2!(3!)2σ6

)

H6(s
′). (3.53)

(Note that this expansion involves products of cumulants at terms at and beyond the sixth
order.)

Figure 9 illustrates the effect of various approximations to FS(s) in the case of a parameter
of intermediate magnitude, b= 2. The solid lines reproduce the true FS(s) in each panel while
the approximations are shown dotted. In panel (a) we see the Gaussian approximation, which
obviously cannot capture the pronounced asymmetry of the true distribution. The skewness is
well captured by the third-order expansion shown in panel (b), but a small amount of nega-
tivity is introduced on the left (this erroneous side effect is greatly reduced in larger values of
parameter b). Unfortunatly, application of the fourth-order Gram-Charlier expansion, shown
in (c), makes the apparent fit noticeably worse, and higher orders of this expansion do not
greatly improve matters. Such problems with the Gram-Charlier expansion are well known
by statisticians, but an ingenious remedy was sought and found by Edgeworth (1904) in the
context of approximations to standardized (rescaled to unit variance) sums of N independent
identically-distributed random variables, where the objective is to characterize the approach
to Gaussian form in greater detail than is given by the simple statement of the central limit
theorem. In this case, while cumulants of the unstandardized distribution of sums combine
additively, the standardization scales the magnitude of the mth cumulant relative to that of the
single member by a factor of 1/N (m−2)/2. Edgeworth reordered, and subsequently truncated,
the series according to successive powers of 1/

√
N :

C(N) ≡ 1 +
λ̂3

3!σ3N1/2
H3(s

′) +
λ̂4

4!σ4N
H4(s

′) +
λ̂5

5!σ5N3/2
H5(s

′) . . .

+
λ̂2

3

2!(3!)2σ6N
H6(s

′) +
λ̂3λ̂4

3!4!N3/2
H7(s

′) . . .

+
λ̂3

3

3!(3!)3N3/2
H9(s

′) . . . , (3.54)
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whereupon, even taking N = 1, a different partial series is obtained when truncated beyond the
first nontrivial (third order) term. The panel (d) of Fig. 9 shows the result of applying the
fourth-order Edgeworth series approximation,

C(1) ≈ 1 +
λ̂3

6σ3
H3(s

′) +

(

λ̂4

24σ4
H4(s

′) +
λ̂2

3

72σ6
H6(s

′)

)

, (3.55)

which vastly improves the overall fit (although the spurious negative amplitude close to the
origin is made larger). The fit is found further improved upon including higher order terms of
this Edgeworth series up to the practical limit of about eighth order. For closer approximations
to the Gaussian, that is, with b > 2 we find that graphs of the function and its approximation at
eighth order become visibly indistinguishable. However, we should be reminded that the series
is asymptotic and not formally convergent at any b (Cramér 1926, 1928, 1946). Blinnikov and
Moessner (1998), who discuss the advantages of the Edgeworth series over Gram-Charlier and
other expansions in a very different spectroscopic context, also outline some efficient algorithms.

The heat transform forcing function, FT(t), can also be approximated by asymptotic series.
In this case, the Edgeworth series is constructed from the cumulants of FT(t), which are also
then given in terms of the even-degree cumulants of fX(x) through the application of theorem 4
and, as derived in appendix B, of the even-degree cumulants χ̂2q. In this case, we need to take
b≥ 10, in order that the asymptotic Edgeworth expansion gives an adequate fit to the exact
solution. Figure 10 shows some comparisons for this b with, again, the true solution shown solid
in each panel and the approximation dotted. Panel (a) shows the Gaussian approximation,
(b) shows the third-order Edgeworth, which essentially corrects for the skewness; (c) shows
the fourth-order correction and (d) shows the excellent fit when the eighth-order expansion is
applied.

4. Skewed generalizations of the basic heavy-tailed densities

It might be tempting to expect that, just as the sech-squared representative of the symmetric
distribution was generated by the self-referential convolution procedure described in section
3, a similar procedure might be used to generalize this representative function to a skewed
version when the symmetric starting function, g(0)(x) = −|x|, is replaced by the asymmetric
modification, g(0)(a; x) = −|x| + ax for a skewness-controlling parameter, a ∈ (−1, 1). However,
this is not recommended; the iteration needs to be stabilized by correcting both of the first two
moments, χ0 and χ1 of the successive iterations of f(n)(a; x) = exp(g(n)) and, by introducing a
corrective x-displacement, we destroy any chance of acquiring a family of solutions that submit
to simple analytic description; but what is worse, we cannot even guarantee that the resulting
converged solution, f(∞)(a; x), is expressible in the form of a mobile point-source heat kernel
representation. We must therefore opt for another approach.

In order to induce a finite measure of skewness for any of the family of distributions
fX(x) of section 3 associated with the parameter b it is sufficient to add to the logarithm,
gX(x) = ln[fX(x)], of each symmetric member of this family a component linear in x. This man-
ifestly preserves the valuable property of convexity and, since it is equivalent to multiplying
each symmetric distribution by an exponential function, each Gaussian component in a heat
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Figure 10. For the case of the parameter having an intermediate magnitude, b = 10, panel (a) shows FT(t) (solid)
together with the Gaussian approximation to it (dotted). In panels (b), (c) and (d) the Gaussian approximation

is improved through the application of the Edgeworth series to orders 3, 4, and 8 respectively.

transform is changed only by an amplification and a displacement. In addition to the asymme-
try parameter, a, we can include a positive width-scaling parameter, ω, so that the enlarged
family of scaled (but still unnormalized) shapes might be expressed by:

fX(ω, a, b; x) = exp(abx) sech2ωb
(

x

2ω

)

, (4.1)
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with a ∈ (−1, 1). Then all of the moments of fX exist, and possess the analytic expressions
computed (for ω = 1, since they are then trivially generalized to other ω) in Appendix B. The
moments up to fourth degree are used in the calculation of kurtosis, enabling us to plot the
images of each parameter pair, (a, b), in the skewness-kurtosis plane. The boundary of the
range of such images is exactly that shown in Fig. 3, with the inscribed curvilinear grid being
contours of constant a and of constant b. The lower bounding curve is approached in the limit
a→±1 where the form of the distribution becomes progressively closer to the exponentiated
Gumbel. Thus, we have fulfilled the desire to generalize the pure Gaussian in terms of a
positive Gaussian mixture that preserves the convexity of the negative-log-probability, has the
exponentiated Gumbel as limiting forms, has all moments finite and expressible analytically,
and is achieved parsimoniously with just two parameters responsible for shape.

The alteration of the heat kernel can be understood by comparing the kernel with a 6= 0 at
fixed x and t with the corresponding kernel (same b) for the symmetric case, a= 0, that we
dealt with in section 3. Thus, for the case where the scale is standardized, ω = 1, the integrand
of the heat transform parameterized as WXT(ω, a, b; x, t) is modified according to:

WXT(1, a, b; x, t)FT(1, a, b; t) ≡ eabxWXT(1, 0, b; x, t)FT(1, 0, b; t)

=
1√
4πt

exp

(

abx− x2

4t

)

FT(1, 0, b; t)

=
1√
4πt

exp

(

−
[

(

x

2
√
t
− ab

√
t

)2

− a2b2t

])

FT(1, 0, b; t)

=
1√
4πt

exp

(

−(x− x̂(t))2

4t

)

A(t)FT(1, 0, b; t), (4.2)

where the trajectory of the effective heat forcing is given by,

x̂(t) ≡ x̂(1, a, b; t) = 2abt, (4.3)

and the amplification factor is:

A(t) ≡A(1, a, b; t) = ea
2b2t. (4.4)

In practice, we partition terms such that:

WXT(1, a, b; x, t) =
1√
4πt

exp

(

−(x− x̂(1, a, b; t))2

4t

)

, (4.5)

and
FT(1, a, b; t) =A(1, a, b; t)FT(1, 0, b; t). (4.6)

For a general scaling, ω, we can relate the mobile heat transform to that of the standardized
case:

fX(ω, a, b; x) =
1

ω

∫

∞

0

1√
4πt′

exp

[

−(x/ω − x̂(1, a, ωb; t′))2

4t′

]

FT(1, a, ωb; t
′) dt′
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=

∫

∞

0

1√
4πω2t′

exp

[

−(x− ωx̂(1, a, ωb; t′))2

4ω2t′

]

FT(1, a, ωb; t
′)

ω
ω2dt′

=

∫

∞

0

1√
4πt

exp

[

−(x− ωx̂(1, a, ωb; t/ω2))2

4t

]

FT(1, a, ωb; t/ω
2)

ω
dt

=

∫

∞

0

1√
4πt

exp

[

−(x− x̂(ω, a, b; t))2

4t

]

FT(ω, a, b; t) dt, (4.7)

(4.8)

where
x̂(ω, a, b; t) = ωx̂(1, a, ωb; t/ω2) = 2abt, (4.9)

and

FT(ω, a, b; t) =
FT(1, a, ωb; t/ω

2)

ω

= A(1, a, ωb; t/ω2)
1

ω
FT(1, 0, ωb; t/ω

2)

= A(ω, a, b; t)FT(ω, 0, b; t), (4.10)

with
A(ω, a, b; t) =A(1, a, ωb; t/ω2) = ea

2b2t ≡A(1, a, b; t). (4.11)

These results for the general x̂ and A lead to the following.
Theorem 8

The amplification profile, A(ω, a, b; t) and the trajectory, x̂(ω, a, b; t) are the same for all
skewed members of this family of distributions, fX(ω, a, b; x), for which the corresponding log-
probability densities, gX(ω, a, b; x), have the pair of asymptotes (apart from constant displace-
ments) in common.

2

Proof of theorem 8

We find that the asymptotes (apart from additive constants coming from normalization and
choice of bias) obey:

gX(ω, a, b; x) ≈











−(1 + a)b|x| : x→−∞
−(1 − a)b|x| : x→ +∞

, (4.12)

and therefore define a and b. But we see from (4.9) and (4.11) that the trajectory, x̂ and the
amplification profile, A, also depend only upon a and b (and are then independent of ω).

2

Remarks

Since we have established that, for this Gaussian-mixture probability family, neither the
trajectory function x̂ nor the amplification factor, A, depend upon ω once a and b are given,
we can drop ω from their list of parameters.
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5. Systematic generalization of heavy-tailed distributions to include convex-

ity control

In order to resolve the problem of how to choose the most natural heavy-tailed distribution
scaling like exp(−|x|) at large |x| we sought to find the function fX(x) that, when convolved with
−|x|, produced the logarithm, gX(x), of that same fX(x). In principle there is no reason why the
same approach should not also work with an alternative more general scaling of the asymptotes
and the application of the corresponding smoothing kernel implicitly being the exponential of
the smoothed −|x|c profile. Arguments similar to those used in section 3 will continue to justify
the assertion that the resulting broad-tailed distributions are still positive Gaussian mixtures.
However, we do not need to seek a new smoothing kernel in this convoluted manner since the
logistic distribution, in its role as a smoothing kernel, remains perfectly serviceable and, being
already a well-characterized analytic function, will lead to a much simpler and more elegant
generalization of our existing logistic-based family.

Recognizing the significance of the logistic distribution function as the common smooth-
ing kernel for our generalized symmetric family, we shall adopt the notation for a scaled and
normalized version of it:

ℓX(ω; x) =
1

4ω
sech2

(

x

2ω

)

. (5.1)

Our generalizations of fX and gX must carry the additional parameter, c, controlling the asymp-
totic exponent, and hence the degree of convexity. In the limit where the scaling parameter,
ω→ 0, i.e., no smoothing applied, we define:

gX(0, a, b, c; x) =











−[(1 + a)b|x|]c : x < 0

−[(1 − a)b|x|]c : x > 0
, (5.2)

The smoothed generalization for symmetric gX then comes from the x-convolution with
ℓX(ω; x), which we express symbolically:

gX(ω, 0, b, c; •) = gX(0, 0, b, c; •) ⋆ ℓX(ω; •) (5.3)

or as an explicit integral,

gX(ω, 0, b, c; x) =

∫

∞

0
(bx′)c

(

ℓX(ω; x− x′) + ℓX(ω; x+ x′)
)

dx′. (5.4)

The variations of shape with parameters ω and b amount to little more than rescalings, since,

gX(ω, 0, b, c; x) = (ωb)cgX(1, 0, 1, c; x/ω). (5.5)

We are assured that the symmetric a= 0 functions, gX, defined in this way are positive Gaussian
mixtures since ℓX is, and the gX with ω = 0 are, and the centers of the component Gaussians
are all at the origin. It then follows that the corresponding exponentiated functions, fX =
exp(gX), are also positive Gaussian mixtures. However, we cannot as yet say anything about
the asymmetrical cases where a 6= 0 since the foundation of the former proofs lay upon the
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assumption that the convolved Gaussians all share a common center of symmetry, which no
longer pertains.

We can begin to make some progress for the restricted, but practically most interesting
parameter range, c < 1, and for the unsmoothed shapes that correspond to the limiting case
ω = 0. Instead of looking at gX we shift the focus to the actual density distribution, fX, and
establish the following result.

Theorem 9

For c ∈ (0, 1) and a ∈ (−1, 1) the function,

fX(0, a, b, c; x) =











ê−(x) = exp {−[(1 + a)b|x|]c} : x < 0

ê+(x) = exp {−[(1 − a)b|x|]c} : x > 0
, (5.6)

has a mobile heat transform representation,

fX(0, a, b, c; x) =

∫

∞

0

1

4πt
exp

(

− [x− x̂(t)]2

4t

)

FT(0, a, b, c; t) dt, (5.7)

for some trajectory, x̂(t), and some forcing profile, FT(t)> 0 defined for all t > 0.
2

Proof of theorem 9

By a direct adaptation of theorem 6 for Laplace transforms we can express ê± as positive
continuous mixtures of exponentials:

ê±(x) ≡ ê±(x, 0) =

∫

∞

0
Ê±(u) exp(∓ux) du. (5.8)

with Ê±(u)> 0, where the more general functions,

ê±(x, t) =

∫

∞

0
Ê±(u) exp(∓ux− u2t) du, (5.9)

manifestly satisfy the homogeneous diffusion equation,

− ∂

∂t
ê±(x, t) =

∂2

∂x2
ê±(x, t). (5.10)

At any t≥ 0 the two functions, exp(∓ux− u2t) have the property referred to by Widder (1941)
as being ‘completely convex’ in x; their derivatives of each order n exist, are positive for even
n, and are of the same sign for every odd n. Since this property is obviously inherited by
any positive combination of such functions, it is possessed by both branches, ê±(x, t) at every
t≥ 0 and at every x regardless of sign. The left branch increases monotonically with x from a
zero asymptote at x→−∞, while the right branch increases monotonically in −x from a zero
asymptote at x→∞, so the graphs of the two curves are guaranteed to intersect at a unique
x̂(t) at each t. A delta-function heat source of positive magnitude

FT(0, a, b, c; t) =

(

∂ê−(x, t)

∂x
− ∂ê+(x, t)

∂x

)∣

∣

∣

∣

x=x̂(t)
(5.11)
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is consistent with the evolving solution:

fX(0, a, b, c; x, t) =











ê−(x, t) : x≤ x̂(t)

ê+(x, t) : x≥ x̂(t).
. (5.12)

to the forced diffusion equation:

(

− ∂

∂t
− ∂2

∂x2

)

fX(0, a, b, c; x, t) = FT(0, a, b, c; t)δ(x− x̂(t)). (5.13)

where the trajectory of the forcing, x̂(t), is implicitly defined by the intersection condition,

ê−(x̂(t)) = ê+(x̂(t)), for all t > 0. (5.14)

2

We cannot extend this result to the complementary half of the range c ∈ (1, 2) using Laplace
transforms in the same way. If there is a solution for a given a > 1 and b, an alternative strategy
to finding it might be to express the ê± at each t as Taylor-Maclaurin series in x (about x= 0),
and search for their intersection numerically, trusting that the intersection lies inside the radius
of convergence. The required spatial derivatives can be obtained by first considering each branch
ê+ and ê− separately to be the respective halves of the solutions of their own symmetric heat
transform problems. The principle will be illustrated for the branch, ê+, and we will simplify
the formulae by using the substitution, b′+ = (1 − a)b, whereupon we have:

ê+(x, t) = fX(0, 0, b
′

+, c; x, t) =

∫

∞

0

1√
4πt′

exp

(

−x2

4t′

)

FT(0, 0, b
′

+, c; t+ t′) dt′, x≥ 0.

(5.15)
(the Gaussian kernel WXT(x, t

′) for the heat transform becomes the convolution kernel Green’s
function for this t-dependent solution of the diffusion equation.) From the evaluation at x= 0
we obtain,

ê+(0, t) =
1

2

∫

∞

0

1√
πt′

FT(0, 0, b
′

+, c; t+ t′) dt′, (5.16)

while, from symmetry and the heat-flux condition at x= 0 we obtain,

∂

∂x
ê+(0, t) = −1

2
FT(0, 0, b

′

+, c; t). (5.17)

But since for x 6= 0 the solution is known to satisfy the homogeneous diffusion equation, we can
iterate this equation as often as we like and exploit the property that the t-derivative commutes
with the convolution operator in (5.15), to deduce that,

∂2n

∂x2n
ê+(0, t) ≡ ∂n

∂(−t)n ê+(0, t) =
1

2

∫

∞

0

√
πt′F

(n)
T (0, 0, b′+, c; t+ t′) dt′ (5.18a)

∂2n+1

∂x2n+1
ê+(0, t) ≡ ∂n

∂(−t)n
∂ê+(0, t)

∂x
= −1

2
F

(n)
T (0, 0, b′+, c; t), (5.18b)
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where the derivatives in the negative t direction are denoted:

F
(n)
T (0, 0, b′+, c; t) ≡

dn

d(−t)nFT(0, 0, b
′

+, c; t). (5.19)

We can restate the formulae above rather elegantly as series of the fractional calculus op-
erations with respect to {−t}, applied to FT. The relevant definitions, which we explain in the
following, are in this instance clesely related to the Weyl fractional integral transforms (Erdélyi
and Bateman, Vol 2, 1954, Oldham and Spanier, 1974). Given a finite function, H(t), decay-
ing at a faster-than-algebraic rate as t→ +∞, we can consistently define for any positive or
negative integer, q, the qth-derivative. For q ≥ 0 we have the conventional derivative,

H(q)(t) ≡ dqH(t)

d(−t)q . (5.20)

For q < 0 we can iterate successive integrals, which we express formally:

H(q)(t) ≡
∫

∞

0
H(q+1)(t+ t′) dt′ ≡

∫

∞

t
H(q+1)(t′) dt′. (5.21)

Then, regardless of the signs of q and r, we find:

dq+rH

d(−t)q+r
≡ dq

d(−t)q
drH

d(−t)r . (5.22)

Fractional calculus consistently extends this identity to apply when q and r are arbitrary non-
integer reals, by first defining:

H(r) =

∫

∞

0

t′−r−1

Γ(−r)H(t+ t′) dt′, r ∈ (−1, 0) (5.23)

and generalizing this in integer steps, q, by assuming (5.22) to hold and applying either (5.20)
or (recursively) (5.21). In particular, since Γ(1

2) =
√
π, we find that we can formally express

the value and all the x-derivatives of ê+ at the origin by the single general formula:

∂n

∂xn
ê+(0, t) = (−)n

1

2
F

(n−1
2

)
T (0, 0, b′+, c; t). (5.24)

Similarly, for the function branch, ê−(x, t), we define b′− = (1 + a)b and, after allowance has
been made for the fact that the x-derivatives we need are now those on the negative side of the
origin (odd x-derivatives switch sign), we obtain, in the same way,

∂n

∂xn
ê−(0, t) =

1

2
F

(n−1
2

)
T (0, 0, b′−, c; t). (5.25)

Whether the Taylor-Maclaurin series converges for a sufficient radius to enable an intersec-
tion remains an open question, as does the existence of an intersection at all for large values
of t, since, without the ‘completely convex’ property, we no longer have the guarantee that
the analytically-continued ê−(x, t) − ê+(x, t) even increases monotonically with x when c > 1.
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Numerical experimentation could provide some insight into these questions of the existence of
a heat-transform solution when c > 1.

Once we are in possession of the forcing, FT(0, a, b, c; t), we can define the amplification
profile for this ω = 0 case:

A(a, b, c; t) =
FT(0, a, b, c; t)

FT(0, 0, b, c; t)
. (5.26)

This quantity is defined for all t because FT(0, 0, b, c; t) is positive for all positive t= 1/4s by
virtue of theorem 6. Since the trajectory, x̂ and the amplification, A, were found, in the simpler
c= 1 case, not to be functions of ω once a and b were defined (theorem 8), we make this property
the defining principle for the generalization to c 6= 1 also. Thus, can we define,

FT(ω, a, b, c; t) =A(a, b, c; t)FT(ω, 0, b, c; t)> 0, (5.27)

and construct the (unnormalized) distribution, fX(ω, a, b, c; x), according to the mobile heat
transform,

fX(ω, a, b, c; x) =

∫

∞

0

1√
4πt

exp

(

− [x− x̂(a, b, c; t)]2

4t

)

FT(ω, a, b, c; t) dt, (5.28)

assured that it comprises a positive Gaussian mixture, as required.
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Figure 11. The solid curve shows the graph of the standardized effective weight function implied by the param-
eter combination (a, b, c) = (0, b, 1), where the value of b does not affect the shape. For comparison, the dashed
curve shows another symmetric case, but with parameters (0, b, 1/25). The principal difference in shape occurs
at the limbs where O − A becomes relatively large in magnitude. The former graph has a profile that will never
cause multimodality in the variational assimilation’s cost function, and therefore should lead to a more robsut

system.

6. Discussion and conclusion
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Guided by a small set of basic, very simple principles, and motivated by the desire to
achieve the benefits of nonlinear quality control without the hazards associated with multiple
minima of the cost function, we have constructed an analytic family of symmetric distributions
of measurement error based on positive powers of the sech function, and the asymmetric skewed
generalizations of these obtained by multiplying by the exponential function of this error. Apart
from the scaling parameter ω, this basic system of distributions requires just two shape param-
eters: the asymmetry, a, and the tail-broadness parameter, b. The symmetric (a= 0) examples
will serve most purposes and will guarantee that the unimodality of the cost function will be
preserved, even without including a formal loss model. In this case, the effective weight at-
tributed to a given observation will not be a constant function of observation minus analysis,
as it would be in the case of purely Gaussian errors, but, instead, should exhibit a bell-shaped
modulation. To see the form of the effective weight, let us suppose that the observation residual
for the model with parameter b is first rescaled by a factor,

√

b/2σ, so that the log-probability,
apart from an additive constant, is just:

gX(x) ∝−2b ln

(

cosh

[

x√
2bσ

])

. (6.1)

The contribution of this particular measurement to the gradient of the cost function when x is
interpretted as the observation-minus-analysis is then

∂L
∂x

=
2b√
2bσ

tanh

[

x√
2bσ

]

, (6.2)

and the effective precision-weight of the observation is:

1

x

∂L
∂x

=
1

σ2
P
(

x√
2bσ

)

(6.3)

where the function P is defined:

P(q) =
1

q
tanh(q). (6.4)

and has the form shown in the solid curve of Fig 11. For comparison, the dashed curve there
shows the effective weight function for the case of the probability model whose third parameter
c= 1/25, when scaled to make the graphs possess approximately the same width of their peaks.
The impressive feature to observe here is that the enormous change in this third parameter
(from 1 to 1/25) makes hardly any discernible difference to the shape of the weight curve near
the origin, but makes a large and important change to its shape further out in the tails. In the
former case, c= 1 will ensure continuing convexity in the cost function, whereas the smaller
parameter, c= 1/25, will jeopardize this property. What we do not see in these graphs is the
more squared-shouldered shapes typically found when the error model consists of the mixture of
a Gaussian with a (very small amount of) broad uniform distribution (see, for examples Lorenc
and Hammon 1988, Andersson and Järvinen 1999).

Although we do not show it, the effect of skewness in fX(x) is to skew the effective weight
function in the opposite direction. This is to be expected since, in the directions of positive
skew, the large errors with this sign of ob-error are relatively more probable than equal errors
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of opposite sign, so an indication, from the O −A statistic, ≡ x, that the error is of the sign
tending to typify the larger error mangnitudes means that the correct response is then to
distrust this measurement more than would be the case if the x had the opposite sign.

While this basic system of (a, b)-parameterized distributions is probably adequate to serve
as the model for most species of scalar observational error encountered in practice, we have
nevertheless extended the model in what we believe is a natural and rational way, so that the
wings of the probability distribution are afforded some measure of shape control. For this, we
introduce a third nontrivial shape parameter, the asymptote convexity, c, (which was implicitly
c= 1 in the basic model) and prove that, for c < 1, at least, consistent smooth generalizations
of our distributions continue to exist with asymmetry a ∈ (−1, 1) and tail broadness, b > 0,
occupying the same parameter range as hitherto. With this more general model, it should be
possible to achieve a more exacting fit to actually inferred observation error statistics. However,
in this case we are in danger of jeopardizing the valuable property of solution-uniqueness in
the cost-function minimization unless the adoption of our more general error distributions is
accompanied by an attempt to include the effects of a nontrivial loss model. This is a topic
that will be treated in the companion article (Purser et al., 2012).

We have taken pains to ensure that each distribution of our proposed family is expressible
as a continuous positive Gaussian mixture, defined by a path, or trajectory for each Gaussian’s
center (heat source) and a weight profile (effective heating rate, in the heat-diffusion analogy).
This is advantageous for any tasks that require synthetic sampling from this distribution. A
random number, t, generated in the first stage according to the weight distribution, FT(t), can
be used to condition a second sampling of a synthetic Gaussian random number scaled to have
the standard deviation,

√
2t and centered at x̂(t). The distribution of all the second random

numbers, taken collectively, has the probability density intended. In pratice, the first stage of
the process (the preselection of each particular t) can be relatively crude in detail, provided the
first few moments of the sampling match those of FT(t), since the randomness of the variables
generated in the second stage tend to obscure minor defects in those generated in the first stage.
An application of such synthetic random numbers might be the simulation of O −A and O −B
statistics, so that the actual observational errors of a given type can be better mapped to the
parameters, ω, a, b, c (and perhaps a bias parameter), of the proposed family.

Finally, it is convenient to give a name to the proposed new system of distributions. Al-
though the original motivation was to find a simple and natural broad-tailed generalization
of the Gaussian with certain desirable properties (being a positive Gaussian mixture, having
infinite support, defined moments, significant limiting cases) it is clear from the development
of this system that the logistic distribution plays as important a role as the Gaussian itself at
all stages of the construction, both of the basic (a, b) family and its further (a, b, c) generaliza-
tion. Moreover since the archetype of the new family with the simplest choice of parameters
[(a, b, c) = (0, 1, 1)] is the classical logistic density, it seems appropriate to refer to the family
as a whole that generalizes it as the ‘Super-Logistic’ system of distributions.
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Appendix A

A verification of equation (3.16) using the heat diffusion equation

It is easily verified that,
fX(x, t) = exp(−|x| − t), (A.1)

satisfies the standard heat equation with a point source at the origin:

−∂fX

∂t
− ∂2fX

∂x2
= 2 exp(−t)δ(x), (A.2)

and therefore that fX(x, 0) = exp(−|x|) is expressible as the heat kernel (Green’s function)
integral:

exp(−|x|) =

∫

∞

0

1√
4πt

2 exp(−t) exp

(

−x2

4t

)

dt. (A.3)

By the changes variables, x2 = z and s= 1/(4t), we obtain:

fZ(z) = exp(−z1/2) =

∫

∞

0
FS(s)e

−sz ds, (A.4)

with,

FS(s) =
1

2
√
πs3/2

exp

(−1

4s

)

. (A.5)

Appendix B

Moments and cumulants for the distribution, exp(abx)sech2b(x/2)

The parameterized unnormalized density function,

fX(a, b; x) = exp(abx) sech2b(x/2), (B.1)

with a shape determined by the two parameters, a and b, is the archetypal form of the heavy-
tailed probability models we propose to model the errors of scalar meteorological observations.
In order to obtain exact moments and cumulants, and hence to normalize the distribution and
get the bias, variance, skewness and kurtosis, we need to be able to solve the integral for its
moment-generating function, fK(a, b; k).

First, we consider the change of variable, w = ex/2, in the integral transform:

fK(a, b, k) =

∫

∞

−∞

exp([ab− ik]x)sech2b(x/2) dx

= 22b+1
∫

∞

−∞

exp((2[ab − ik] − 1)x/2)

(ex/2 + e−x/2)2b

ex/2

2
dx

= 22b+1
∫

∞

0

w2[ab−ik]−1

(w + 1/w)2b
dw. (B.2)
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By a second change of variable: v = w2/(w2 + 1) ≡ 2ex/2sech(x/2) we find that

dv =
2w dw

(w2 + 1)2
, (B.3)

and hence the result can be evaluated as a (complex) beta function:

fK(a, b; k) = 22b
∫ 1

0
vb+ab−ik−1(1 − v)b−ab+ik−1 dv

= 22bB (b+ ab− ik, b− ab+ ik)

≡ 22b Γ(b+ ab− ik)Γ(b− ab+ ik)

Γ(2b)
. (B.4)

As usual, the moments χq can be found by repeatedly differentiating fK of (B.4) with
respect to k at the origin or, equivalently, by the appropriate combinations of the cumulants,
χ̂q, obtained by evaluating successive k-derivatives at the origin of the cumulant-generating
function, ln(fK(a, b; k)), which proves, in this case, to be much simpler. Since the cumulant-
generating function is,

ln[fK(a, b; k)] = ln

(

22b

Γ(2b)

)

+ ln (Γ(b+ ab− ik)) + ln (Γ(b− ab+ ik)) , (B.5)

and the qth cumulant is defined from it by:

χ̂q =
iqdq

dkq
ln[fK(a, b; k)]

∣

∣

∣

∣

k=0
, (B.6)

we find that,

χ̂q = ψ
(q−1)
+ + (−)qψ

(q−1)
− , q > 0, (B.7)

where
ψ

(q−1)
± = ψ(q−1)([1 ± a]b) (B.8)

denote the evaluations of the polygamma function of index q − 1 defined by (e.g., Abramowitz
and Stegun, 1972, p. 260):

ψ(q−1)(z) =
dq

dzq
ln(z). (B.9)

The following procedure has been found to provide accurate and reliable numerical evalua-
tions of the polygamma function for small to moderate arguments. Since the pair of arguments
(1 ± a)b are real, an iterated application of the standard recurrence:

ψ(n)(z + 1) = ψ(n)(z) + (−)nn!z−(n+1), (B.10)

will alway enable the desired result to be expressed in terms of the same polygamma function
evaluated for an argument z ∈ [12 ,

3
2 ] But then, for any |z|< 1 there exists a convergent series
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expansion in terms of Euler’s constant, γ ≈ 0.5772 . . . (for the digamma function ψ ≡ ψ(0) only)
and Riemann’s zeta function:

ψ(n)(1 + z) =











−γ −∑∞

m=1(−)mζ(m+ 1)zm : n= 0

(−)n+1 ∑∞

m=0(−)m (n+m)!
m! ζ(n+m+ 1)zm : n > 0

, (B.11)

where the summation defining the zeta function,

ζ(w) =
∞
∑

n=1

n−w, (B.12)

can be accelerated by replacing all but the first few (e.g., 10) terms by the approximating
integral corrected by the asymptotic Euler-Maclaurin formula. For large arguments of the
polygamma functions, an asymptotic expansion proves to be more accurate. Abramowitz and
Stegun (1972) provide all the necessary formulae.

In the important case of the symmetric distributions, where a= 0 and the odd moments
vanish, the cumulants simplify:

χ̂q =











2ψ(q−1)(b) : q even

0 : q odd
. (B.13)
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2001 The Laplace Distribution and Generalizations. Birkhäuser, Boston.
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